Benutzer-Werkzeuge

Webseiten-Werkzeuge


tilia_cordata_mill

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
tilia_cordata_mill [2019/03/05 14:26]
andreas
tilia_cordata_mill [2022/01/17 12:13] (aktuell)
andreas
Zeile 14: Zeile 14:
  
 The highly sensitive 2,6-dimethyl-3(E),5(Z),7-octatriene-2-ol and its 5(E) isomer (natural ratio 1:10, sweet floral odor) are major constituents present only in the headspace and not in extracts of the flowers of T.cordata.\\ The highly sensitive 2,6-dimethyl-3(E),5(Z),7-octatriene-2-ol and its 5(E) isomer (natural ratio 1:10, sweet floral odor) are major constituents present only in the headspace and not in extracts of the flowers of T.cordata.\\
-[Trapping, Investigation and Reconstitution of Flower Scents, Roman Kaiser, in: Müller, P.M., and Lamparsky, D. eds. Perfumes: Art, Science and Technology. Springer Science & Business Media, Dordrecht 1994, 213-250] +[Trapping, Investigation and Reconstitution of Flower Scents, Roman Kaiser, in: Müller, P.M., and Lamparsky, D. eds. Perfumes: Art, Science and Technology. Springer Science & Business Media, Dordrecht 1994, 213-250] but \\ 
 +Later on, headspace analysis of hyacinth flowers showed that 2,6-dimethylocta-1,3,5,7-tetraenes and 2,6-dimethylocta-3,5,7-triene-2-ols are associated with charcoal as adsorbing material. It was shown that these compounds are artefacts from ocimene which mainly arise during sampling with charcoal. \\ 
 +[Headspace analysis of hyacinth flowers. Brunke, E. J., Hammerschmidt, F. J., Schmaus, G., Flavour and fragrance journal, Vol.9(2), 1994, 59-69
  
 "More than 45 headspace constituents of the **living lime tree flowers** were detected by gas chromatographic-spectroscopic methods; more than 35 of them were identified. Main components (concentration higher than 3%) of this mixture with an odour impression similar to that of the genuine lime tree flowers' as well as with weak fresh and aromatic side-notes were limonene (22%), p-cymene (22%), δ3-carene (15%), germacrene-D (9%), β-phellandrene (4%) and farnesol (4%). Using a GC-sniffing technique, regions of specific odour impressions were found by means of which the total odour of the headspace sample of the living flowers was determined: the aromatic odour was caused especially by p-cymene, trans-carveol and germacrene-D; the floral part by linalool, 2-phenylethanol, trans-rose oxide, geraniol, nerol, 2-phenylethyl acetate, geranyl acetate and partly, nerolidol; the fresh part by camphene, limonene and camphor; and the narcotic part by 2-phenylethanol, nerol, heliotropin and farnesol. However, indole, 2-phenylethyl benzoate, farnesyl acetate and some other sesquiterpenes had additional odour notes... \\ "More than 45 headspace constituents of the **living lime tree flowers** were detected by gas chromatographic-spectroscopic methods; more than 35 of them were identified. Main components (concentration higher than 3%) of this mixture with an odour impression similar to that of the genuine lime tree flowers' as well as with weak fresh and aromatic side-notes were limonene (22%), p-cymene (22%), δ3-carene (15%), germacrene-D (9%), β-phellandrene (4%) and farnesol (4%). Using a GC-sniffing technique, regions of specific odour impressions were found by means of which the total odour of the headspace sample of the living flowers was determined: the aromatic odour was caused especially by p-cymene, trans-carveol and germacrene-D; the floral part by linalool, 2-phenylethanol, trans-rose oxide, geraniol, nerol, 2-phenylethyl acetate, geranyl acetate and partly, nerolidol; the fresh part by camphene, limonene and camphor; and the narcotic part by 2-phenylethanol, nerol, heliotropin and farnesol. However, indole, 2-phenylethyl benzoate, farnesyl acetate and some other sesquiterpenes had additional odour notes... \\
tilia_cordata_mill.txt · Zuletzt geändert: 2022/01/17 12:13 von andreas