Benutzer-Werkzeuge

Webseiten-Werkzeuge


vanilla_planifolia_andrews

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
vanilla_planifolia_andrews [2019/01/29 11:26]
andreas
vanilla_planifolia_andrews [2019/02/02 11:31]
andreas
Zeile 15: Zeile 15:
 and [[http://www.thegoodscentscompany.com/data/rw1057511.html|acetovanillone]], occurring at concentrations of 3.8-13.7 ppm, were similar in intensity to vanillin, which was detected at a concentration of more than 1000 times that of these compounds. Methyl salicylate, detected at a level of less than 1 ppm, was perceived as being as intense as anillin. p-Cresol, methyl cinnamate and anisyl alcohol, occurring at concentrations of 1.1-2.4 ppm, were of medium intensity. Sweet, woody, balsamic, spicy, vanilla-like and toasted notes were attributed to phenolic compounds. Vanillic acid was not perceived by panellists, because its elution required a high temperature, which caused a burnt odour in the sniffing port. The aldehydes 2-heptenal and (E)-2-decenal, identified here for the first time in vanilla beans, were perceived as being of medium intensity, with green, oily and herb-like floral notes. Aliphatic, acetic, isobutyric, isovaleric and valeric acids were perceived by the panellists as having sour, buttery and oily notes. In conclusion, this study is in agreement with previous observations of the contribution of minor constituents to the overall aroma of cured vanilla beans, through GC-O analysis of a representative aroma extract from cured vanilla beans." \\ and [[http://www.thegoodscentscompany.com/data/rw1057511.html|acetovanillone]], occurring at concentrations of 3.8-13.7 ppm, were similar in intensity to vanillin, which was detected at a concentration of more than 1000 times that of these compounds. Methyl salicylate, detected at a level of less than 1 ppm, was perceived as being as intense as anillin. p-Cresol, methyl cinnamate and anisyl alcohol, occurring at concentrations of 1.1-2.4 ppm, were of medium intensity. Sweet, woody, balsamic, spicy, vanilla-like and toasted notes were attributed to phenolic compounds. Vanillic acid was not perceived by panellists, because its elution required a high temperature, which caused a burnt odour in the sniffing port. The aldehydes 2-heptenal and (E)-2-decenal, identified here for the first time in vanilla beans, were perceived as being of medium intensity, with green, oily and herb-like floral notes. Aliphatic, acetic, isobutyric, isovaleric and valeric acids were perceived by the panellists as having sour, buttery and oily notes. In conclusion, this study is in agreement with previous observations of the contribution of minor constituents to the overall aroma of cured vanilla beans, through GC-O analysis of a representative aroma extract from cured vanilla beans." \\
 [GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans., Pérez-Silva, A., Odoux, E., Brat, P., Ribeyre, F., Rodriguez-Jimenes, G., Robles-Olvera, V., Günata, Z., Food chemistry, Vol.99(4), 2006, 728-735] [GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans., Pérez-Silva, A., Odoux, E., Brat, P., Ribeyre, F., Rodriguez-Jimenes, G., Robles-Olvera, V., Günata, Z., Food chemistry, Vol.99(4), 2006, 728-735]
 +
 +By GC-MS and GC-O, 78 odorants were identified in traditionally cured Bourbon and Ungandan vanilla bean extracts. Vanillin was the most abundant followed by guaiacol (105/169ppm) and the two isomers of 2,3-butandiol (36/46ppm; plus their acetals with vanillin 30/14ppm). In the range of 1-10ppm were 3-methyl-2-butanone, acetoin, isovaleric acid, γ-butyrolactone, phenol, pantolactone, benzyl alcohol, 4-methylphenol, octanol, phenylethanol, benzoic acid, octanoic acid, 4-methylguaiacol, methyl salicylate, p-anisaldehyde, nonanoic acid, anisyl alcohol, cinnamyl alcohol, isovanillin, cinnamic acid, ethyl cinnamate, acetovanillone, methyl vanillate, cis-18-heptacosene-2,4-dione, and cis-20-nonacosene-2,4-dione. Carvacrol and β-damascenone were only found in Ugandan beans. Among the twenty-three most powerful odorants (medium or strong odor intensity, but <= 0.05ppm) were 3,5-octadien-2-one, nonanol, γ-octalactone, 4-allylphenol, heliotropine, methyl decanoate, β-damascenone, and some nitrogen-containing compounds. "Interestingly, of the six more concentrated strong odorants, namely, acetic acid, methyl salicylate, p-anisaldehyde, methyl trans-cinnamate, trans-cinnamic acid, and methylparaben, five were more abundant in the Ugandan vanilla beans, with p-anisaldehyde as the most different in terms of concentration." \\
 +[Zhang, Suying, and Christoph Mueller. "Comparative analysis of volatiles in traditionally cured Bourbon and Ugandan vanilla bean (Vanilla planifolia) extracts." Journal of agricultural and food chemistry 60.42 (2012): 10433-10444]
  
 | {{:vanillin.jpg| vanillin}} \\ vanillin | {{:guaiacol.jpg| guaiacol}} \\ guaiacol | {{:valspice.jpg| 4-methyl guaiacol}} \\ 4-methyl guaiacol \\ //(valspice)// | {{:damascenone.jpg|}} \\ (E)-β-damascenone | {{:ethylcinnamate.jpg|ethyl cinnamate}} \\ ethyl cinnamate | | {{:vanillin.jpg| vanillin}} \\ vanillin | {{:guaiacol.jpg| guaiacol}} \\ guaiacol | {{:valspice.jpg| 4-methyl guaiacol}} \\ 4-methyl guaiacol \\ //(valspice)// | {{:damascenone.jpg|}} \\ (E)-β-damascenone | {{:ethylcinnamate.jpg|ethyl cinnamate}} \\ ethyl cinnamate |
Zeile 20: Zeile 23:
 „...the most odor-active compounds (FD 3125), vanillin (sweet), guaiacol (phenolic), ethyl (E)-cinnamate (fruity) and β-damascenone (raisin-like), were common to red whole and cuts beans. Moreover, in the same FD factor range (FD 3125), 2-methylbutanoic acid (buttery), 3-methylbutanoic acid (buttery) and p-cresol (fecal) contributed more to the aroma of MV red whole, whereas γ-nonalactone (coconut-like) and eugenol (clove-like) contributed more to the aroma of MV cuts. Based on their odor qualities, vanillin and guaiacol respectively contributed to the sweet and phenolic attributes by the sensory evaluation, and both ethyl (E)-cinnamate and β-damascenone contributed to the resinous and dried fruit-like attributes.“ \\ „...the most odor-active compounds (FD 3125), vanillin (sweet), guaiacol (phenolic), ethyl (E)-cinnamate (fruity) and β-damascenone (raisin-like), were common to red whole and cuts beans. Moreover, in the same FD factor range (FD 3125), 2-methylbutanoic acid (buttery), 3-methylbutanoic acid (buttery) and p-cresol (fecal) contributed more to the aroma of MV red whole, whereas γ-nonalactone (coconut-like) and eugenol (clove-like) contributed more to the aroma of MV cuts. Based on their odor qualities, vanillin and guaiacol respectively contributed to the sweet and phenolic attributes by the sensory evaluation, and both ethyl (E)-cinnamate and β-damascenone contributed to the resinous and dried fruit-like attributes.“ \\
 [Takahashi, Makoto, et al. "Key odorants in cured Madagascar vanilla beans (Vanilla planiforia) of differing bean quality." Bioscience, biotechnology, and biochemistry 77.3 (2013): 606-611] [[https://www.jstage.jst.go.jp/article/bbb/77/3/77_120842/_pdf]] [Takahashi, Makoto, et al. "Key odorants in cured Madagascar vanilla beans (Vanilla planiforia) of differing bean quality." Bioscience, biotechnology, and biochemistry 77.3 (2013): 606-611] [[https://www.jstage.jst.go.jp/article/bbb/77/3/77_120842/_pdf]]
 +
 +Quantitative analysis (HPLC) of vanilla extracts showed mean concentrations of guaiacol and vanillin (µg/mL) in 'MV red whole' with standard quality (17.8/2480) and 'MV cuts' with substandard aroma (88.7/1540). \\
 +[Takahashi, Makoto, Shizuka Sakamaki, and Akira Fujita. "Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection." Bioscience, biotechnology, and biochemistry 77.3 (2013): 595-600] [[https://www.jstage.jst.go.jp/article/bbb/77/3/77_120835/_pdf]]
  
 "There are different methods of curing, and each one is unique and named after the places of its origin like Mexican process and Bourbon process. Recently, Central Food Technological Research Institute, Mysore has developed know-how of improved curing process, where the green vanilla beans are cured immediately after harvest and this process takes only 32 days, which otherwise requires minimum of 150-180 days as reported in traditional curing methods." \\ "There are different methods of curing, and each one is unique and named after the places of its origin like Mexican process and Bourbon process. Recently, Central Food Technological Research Institute, Mysore has developed know-how of improved curing process, where the green vanilla beans are cured immediately after harvest and this process takes only 32 days, which otherwise requires minimum of 150-180 days as reported in traditional curing methods." \\
vanilla_planifolia_andrews.txt · Zuletzt geändert: 2022/04/13 09:53 von andreas