Benutzer-Werkzeuge

Webseiten-Werkzeuge


mangifera_indica_l

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
mangifera_indica_l [2019/03/13 14:45]
andreas
mangifera_indica_l [2021/01/11 16:02]
andreas
Zeile 11: Zeile 11:
  
 "Studies on mango aroma indicate the importance of a mixture of nine volatile lactones to good mango aroma... Since mango aroma and flavor vary widely among cultivars, there is no one typical formulation of flavor components of this fruit." \\ "Studies on mango aroma indicate the importance of a mixture of nine volatile lactones to good mango aroma... Since mango aroma and flavor vary widely among cultivars, there is no one typical formulation of flavor components of this fruit." \\
-Lactones as specific flavor components in mango puree were e.g. (cv. Alphonso/Baladi, ppb): γ-butyrolactone (50/50), γ-valerolactone (20/20), γ-hexalactone (50/40), γ-octalactone (150/500), δ-octalactone (30/50),  γ-nonalactone (30/40), δ-nonalactone (50/40), γ-decalactone (50/40), and δ-decalactone (20/40). \\ +Lactones as specific flavor components in mango puree were e.g. (cvs. Alphonso/Baladi, ppb): γ-butyrolactone (50/50), γ-valerolactone (20/20), γ-hexalactone (50/40), γ-octalactone (150/500), δ-octalactone (30/50),  γ-nonalactone (30/40), δ-nonalactone (50/40), γ-decalactone (50/40), and δ-decalactone (20/40). Quantitative values of the lactones and furaneol and comparisions of Mango purees with added components by a aroma panel suggest that these compounds are present slightly above or below their flavor thresholds. \\  
 +[„Flavors and Fragrances. A World Perspective,“ ed. by B. M. Lawrence, B. D. Mookherjee, and B. J. Wilis, Elsevier, Amsterdam, 1988, 283-294] \\
 [Wilson III, Charles W., Philip E. Shaw, and Robert J. Knight Jr. "Importance of some lactones and 2,5-dimethyl-4-hydroxy-3(2H)-furanone to mango (Mangifera indica L.) aroma." Journal of Agricultural and Food Chemistry 38.7 (1990): 1556-1559] [Wilson III, Charles W., Philip E. Shaw, and Robert J. Knight Jr. "Importance of some lactones and 2,5-dimethyl-4-hydroxy-3(2H)-furanone to mango (Mangifera indica L.) aroma." Journal of Agricultural and Food Chemistry 38.7 (1990): 1556-1559]
  
Zeile 37: Zeile 38:
 4-Hydroxy-2,5-dimethyl-3(2H)-furanone has been found an important aroma compound in several Mango cultivars (Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi). \\ 4-Hydroxy-2,5-dimethyl-3(2H)-furanone has been found an important aroma compound in several Mango cultivars (Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi). \\
 [Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis., Munafo Jr, J. P., Didzbalis, J., Schnell, R. J., Schieberle, P., Steinhaus, M., Journal of agricultural and food chemistry, 62(20), 2014, 4544-4551] [Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis., Munafo Jr, J. P., Didzbalis, J., Schnell, R. J., Schieberle, P., Steinhaus, M., Journal of agricultural and food chemistry, 62(20), 2014, 4544-4551]
 +
 +"Thirty-four aroma-active compounds, previously identified with high flavor dilution factors by application of an aroma extract dilution analysis, were quantified in tree-ripened fruits of mango (Mangifera indica L. ‘Haden’). From the results, the odor activity value (OAV) was calculated for each compound as the ratio of its concentration in the mangoes to its odor threshold in water. OAVs > 1 were obtained for 24 compounds, among which ethyl 2-methylbutanoate (fruity; OAV 2100), (3E,5Z)-undeca-1,3,5-triene (pineapple-like; OAV 1900), ethyl 3-methylbutanoate (fruity; OAV 1600), and ethyl butanoate (fruity; OAV 980) were the most potent, followed by (2E,6Z)-nona-2,6-dienal (cucumber-like), ethyl 2-methylpropanoate (fruity), (E)-β-damascenone (cooked apple-like), ethyl hexanoate (fruity), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 3-methylbut-2-ene-1-thiol (sulfurous), γ-decalactone (peach-like), β-myrcene (terpeny), (3Z)-hex-3-enal (green), 4-methyl-4-sulfanylpentan-2-one (tropical fruit-like), and ethyl octanoate (fruity). Aroma simulation and omission experiments revealed that these 15 compounds, when combined in a model mixture in their natural concentrations, were able to mimic the aroma of the fruits." \\
 +[Munafo Jr, John P., et al. "Insights into the key aroma compounds in mango (Mangifera indica L.‘Haden’) fruits by stable isotope dilution quantitation and aroma simulation experiments." Journal of agricultural and food chemistry 64.21 (2016): 4312-4318]
  
 {{:mangifera_indica.jpg?600}} \\ {{:mangifera_indica.jpg?600}} \\
mangifera_indica_l.txt · Zuletzt geändert: 2021/01/11 16:02 von andreas