Benutzer-Werkzeuge

Webseiten-Werkzeuge


malus_domestica_borkh

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
malus_domestica_borkh [2018/09/01 13:48]
andreas
malus_domestica_borkh [2019/10/08 12:15]
andreas
Zeile 3: Zeile 3:
 Deciduous tree, up to 4m (cultivars) or 12m (wild) tall. "The tree originated in Central Asia, where its wild ancestor, Malus sieversii, is still found today. Apples have been grown for thousands of years in Asia and Europe, and were brought to North America by European colonists... There are more than 7,500 known cultivars of apples, resulting in a range of desired characteristics." [[http://en.wikipedia.org/wiki/Apple]] Deciduous tree, up to 4m (cultivars) or 12m (wild) tall. "The tree originated in Central Asia, where its wild ancestor, Malus sieversii, is still found today. Apples have been grown for thousands of years in Asia and Europe, and were brought to North America by European colonists... There are more than 7,500 known cultivars of apples, resulting in a range of desired characteristics." [[http://en.wikipedia.org/wiki/Apple]]
  
-Main compound in the headspace of apple flowers was benzaldehyde (13%), followed by geranial (7%) and neral (7%), limonene (5%), 3-carene, α-pinene, terpinolene, benzylalcohol, geraniol,  cinnamaldehyde (4% resp.), and α-humulene, 2-phenylethylalcohol, benzyl acetate, and 2-phenylethyl acetate (3% resp.). Minor but olfactory important components were eugenol (1.1%), hexanol, 3-hexenol, linalool, menthol, thymol, vanillin (trace), decanal, β-ionone, bornyl acetate, geranyl acetate, hexyl acetate and 3-hexenyl acetate. \\ [Headspace and essential oil analysis of apple flowers. Gerhard. Buchbauer , Leopold. Jirovetz , Michael. Wasicky , Alexej. Nikiforov, J. Agric. Food Chem.1993, 41 (1), pp 116-118]+Main compound in the headspace of apple flowers was benzaldehyde (13%), followed by geranial (7%) and neral (7%), limonene (5%), 3-carene, α-pinene, terpinolene, benzylalcohol, geraniol,  cinnamaldehyde (4% resp.), and α-humulene, 2-phenylethylalcohol, benzyl acetate, and 2-phenylethyl acetate (3% resp.). Minor but olfactory important components were eugenol (1.1%), hexanol, 3-hexenol, linalool, menthol, thymol, vanillin (trace), decanal, β-ionone, bornyl acetate, geranyl acetate, hexyl acetate and 3-hexenyl acetate. \\ [Buchbauer, Gerhard, et al. "Headspace and essential oil analysis of apple flowers." Journal of Agricultural and Food Chemistry 41.1 (1993)116-118]
  
 ---- ----
Zeile 39: Zeile 39:
 [Mehinagic, Emira, et al. "Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage." Journal of Agricultural and Food Chemistry 54.7 (2006): 2678-2687] [Mehinagic, Emira, et al. "Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage." Journal of Agricultural and Food Chemistry 54.7 (2006): 2678-2687]
  
-Methyl 2-methylbutanoate and ethyl 2-methylbutanote were considered as the most potent odorants of the very aromatic [[https://en.wikipedia.org/wiki/Fuji_(apple)|Fuji apple]] (cross between Red Delicious and Rawls Jennet). Further volatiles with high Flavor Dilution (FD) factors were isobutyl acetate, ethyl butanoate, isopentyl formate, butyl acetate and hexyl acetate as well as hexanal. \\+Methyl 2-methylbutanoate [FD 2344] and ethyl 2-methylbutanote [FD 3336] with very low odour detection thresholds in air (~1ng/l) were considered the most potent odorants of the very aromatic [[https://en.wikipedia.org/wiki/Fuji_(apple)|Fuji apple]] (cross between Red Delicious and Rawls Jennet). Further volatiles with high Flavor Dilution (FD) factors were isobutyl acetate, ethyl butanoate, isopentyl formate, butyl acetate and hexyl acetate as well as hexanal. \\
 [Determination of potent odorants in apple by headspace gas dilution analysis., Komthong, P., Hayakawa, S., Katoh, T., Igura, N., Shimoda, M., LWT-Food Science and Technology, 39(5), 2006, 472-478] [Determination of potent odorants in apple by headspace gas dilution analysis., Komthong, P., Hayakawa, S., Katoh, T., Igura, N., Shimoda, M., LWT-Food Science and Technology, 39(5), 2006, 472-478]
  
malus_domestica_borkh.txt · Zuletzt geändert: 2022/06/13 11:30 von andreas