Benutzer-Werkzeuge

Webseiten-Werkzeuge


camellia_sinensis_l._kuntze

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
camellia_sinensis_l._kuntze [2018/10/11 14:59]
andreas
camellia_sinensis_l._kuntze [2020/05/12 22:22] (aktuell)
andreas
Zeile 59: Zeile 59:
 "​Volatile compounds from Pu-erh tea were extracted using a headspace-solid phase microextraction (HS-SPME), and analysed with a gas chromatography-mass spectrometry (GC-MS) and a gas chromatography olfactometry (GC-O). Results showed that a total of 66 major volatile compounds were identified by GC-MS analysis; among them, methoxy-phenolic compounds (33.58%), alcohols (23.01%) and hydrocarbons (11.62%) were the major chemical classes. It was found that 1,​2,​3-trimethoxybenzene (17.16%) was the most abundant aroma component, followed by α-terpineol (5.68%), 1,​2-dimethoxybenzene (4.64%) and linalool oxide II (4.29%) in order. Twenty-nine odour active compounds were perceived by GC-O analysis. Further investigation showed that 1,​2-dimethoxybenzene,​ 1,​2,​3-trimethoxybenzene,​ 1,​2,​3-trimethoxy-5-methylbenzene,​ 4-ethyl-1,​2-dimethoxy-benzene,​ β-ionone, β-linalool,​ linalool oxides, decanal, etc. were responsible for the special flavour in Pu-erh tea. It seems that the methoxy-phenolic compounds and alcohols play a vital role in the special flavour of Pu-erh tea." \\ "​Volatile compounds from Pu-erh tea were extracted using a headspace-solid phase microextraction (HS-SPME), and analysed with a gas chromatography-mass spectrometry (GC-MS) and a gas chromatography olfactometry (GC-O). Results showed that a total of 66 major volatile compounds were identified by GC-MS analysis; among them, methoxy-phenolic compounds (33.58%), alcohols (23.01%) and hydrocarbons (11.62%) were the major chemical classes. It was found that 1,​2,​3-trimethoxybenzene (17.16%) was the most abundant aroma component, followed by α-terpineol (5.68%), 1,​2-dimethoxybenzene (4.64%) and linalool oxide II (4.29%) in order. Twenty-nine odour active compounds were perceived by GC-O analysis. Further investigation showed that 1,​2-dimethoxybenzene,​ 1,​2,​3-trimethoxybenzene,​ 1,​2,​3-trimethoxy-5-methylbenzene,​ 4-ethyl-1,​2-dimethoxy-benzene,​ β-ionone, β-linalool,​ linalool oxides, decanal, etc. were responsible for the special flavour in Pu-erh tea. It seems that the methoxy-phenolic compounds and alcohols play a vital role in the special flavour of Pu-erh tea." \\
 [Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC–olfactometry.,​ Lv, H.P., Zhong, Q.S., Lin, Z., Wang, L., Tan, J.F., Guo, L., Food Chemistry, Vol.130(4), 2012, 1074-1081] [Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC–olfactometry.,​ Lv, H.P., Zhong, Q.S., Lin, Z., Wang, L., Tan, J.F., Guo, L., Food Chemistry, Vol.130(4), 2012, 1074-1081]
 +
 +As //jasminoid troika//, Z-jasmone, methyl jasmonate, and δ-jasmolactone constitute the organoleptic principle of Ceylon (Sri Lankan) tea. \\
 +[Scent and Chemistry, Günther Ohloff, Wilhelm Pickenhagen,​ Philip Kraft, Wiley-VCH, 2012, 263]
  
 "The polyphenols,​ a large group of plant chemicals that includes the catechins, are thought to be responsible for the health benefits that have traditionally been attributed to tea, especially green tea. Major catechins are (-)-epicatechin gallate (ECG), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). The most active and abundant catechin in green tea is epigallocatechin-3-gallate (EGCG). Black tea contains much lower concentrations of these catechins than green tea. Oolong tea contains a mixture of simple polyphenols,​ such as catechins and complex polyphenols."​ \\ "The polyphenols,​ a large group of plant chemicals that includes the catechins, are thought to be responsible for the health benefits that have traditionally been attributed to tea, especially green tea. Major catechins are (-)-epicatechin gallate (ECG), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). The most active and abundant catechin in green tea is epigallocatechin-3-gallate (EGCG). Black tea contains much lower concentrations of these catechins than green tea. Oolong tea contains a mixture of simple polyphenols,​ such as catechins and complex polyphenols."​ \\
camellia_sinensis_l._kuntze.txt · Zuletzt geändert: 2020/05/12 22:22 von andreas