Benutzer-Werkzeuge

Webseiten-Werkzeuge


artemisia_absinthium_l

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
artemisia_absinthium_l [2018/03/28 22:56]
andreas
artemisia_absinthium_l [2019/05/21 11:00] (aktuell)
andreas
Zeile 30: Zeile 30:
 Major volatile components of 70 examined samples of Absinthe were α- and β-thujone, fenchone and linalool. In aniseed-containing absinthe, anethole also has been detected. The aromatic herbal wormwood flavor (reminiscent of chamomile), and an overall high quality revealed the best correlation with α- and β-thujone. The ouzo effect (turbidity when diluted with water) correlated at best with linalool and sesquiterpenes. There was a very large variability of thujone content present in the group of high-quality absinthe. Only individual French products, and two products manufactured according to traditional recipes in the Swiss Val-de-Travers,​ showed relatively low thujone content, although a significant wormwood flavor was present. A sole rejection of absinthes by their limited content of thujone is thus regarded as problematic,​ especially as the demand for a minimum content for a restricted toxic substance seems critically. Origin from the wormwood plant can be considered safe, when β-thujone clearly predominates the α-isomer in content. Among the tested products of French origin with higher quality, there were some with uncharacteristically larger α-thujone content - another chemotype of Artemisia absinthium L. could be responsible. For many products, in which the α-isomer predominates,​ the thujone has been not or not exclusively made of wormwood - but maybe from cedar (which has α-thujone up to 85% of thujones). \\ Major volatile components of 70 examined samples of Absinthe were α- and β-thujone, fenchone and linalool. In aniseed-containing absinthe, anethole also has been detected. The aromatic herbal wormwood flavor (reminiscent of chamomile), and an overall high quality revealed the best correlation with α- and β-thujone. The ouzo effect (turbidity when diluted with water) correlated at best with linalool and sesquiterpenes. There was a very large variability of thujone content present in the group of high-quality absinthe. Only individual French products, and two products manufactured according to traditional recipes in the Swiss Val-de-Travers,​ showed relatively low thujone content, although a significant wormwood flavor was present. A sole rejection of absinthes by their limited content of thujone is thus regarded as problematic,​ especially as the demand for a minimum content for a restricted toxic substance seems critically. Origin from the wormwood plant can be considered safe, when β-thujone clearly predominates the α-isomer in content. Among the tested products of French origin with higher quality, there were some with uncharacteristically larger α-thujone content - another chemotype of Artemisia absinthium L. could be responsible. For many products, in which the α-isomer predominates,​ the thujone has been not or not exclusively made of wormwood - but maybe from cedar (which has α-thujone up to 85% of thujones). \\
 [Authentifizierung von Absinth-bittere Wahrheit über eine Legende., Lachenmeier,​ D.W., Emmert, J., Sartor, G., Deut. Lebensm.-Rundsch,​ 101, 2005, 100-104] [[http://​www.academia.edu/​download/​32834851/​Absinth_100_104_DLR-2005k.pdf]] [Authentifizierung von Absinth-bittere Wahrheit über eine Legende., Lachenmeier,​ D.W., Emmert, J., Sartor, G., Deut. Lebensm.-Rundsch,​ 101, 2005, 100-104] [[http://​www.academia.edu/​download/​32834851/​Absinth_100_104_DLR-2005k.pdf]]
 +
 +"After the recent annulment of the absinthe prohibition all analysed products showed a thujone concentration below themaximum limit of 35 mg/l, including the absinthes produced according to historic recipes, which did not contain any detectable or only relatively low concentrations of thujone (mean: 1.3-1.6 mg/l, range: 0-4.3 mg/l). Interestingly,​ the vintage absinthe also showed a relatively low thujone concentration of 1.8 mg/l. The Val-de-Travers absinthes contained 9.4 and 1.7 mg/l of thujone. In conclusion, thujone concentrations as high as 260 mg/l, reported in the 19th century, cannot be confirmed by our study. With regard to their thujone concentrations,​ the hallucinogenic potential of vintage absinthes can be assessed being rather low because the historic products also comply with today’s maximum limits derived to exclude such effects. It may be deduced that thujone plays none, or only a minor role in the clinical picture of absinthism."​ \\
 +[Lachenmeier,​ Dirk W., et al. "​Thujone—Cause of absinthism?​."​ Forensic science international 158.1 (2006): 1-8] 
  
 "​Variations in the essential oil composition of Artemisia absinthium L. obtained from different geographical areas of Europe were determined using capillary gas chromatographic and mass spectrometric analysis methods. The oils from air-dried wormwood were obtained in yields of 0.1-1.1%. The Absinthii herba grown in Estonia corresponded to the EP standards in the aspect of the essential oil contents. A total of 107 components were identified, representing over 85% of the total yield of oil. The principal components in the oils were sabinene (0.9-30.1%),​ myrcene (0.1-38.9%),​ 1, 8-cineole (0.1-18.0%),​ artemisia ketone (0-14.9%), linalool and α-thujone (1.1-10.9%),​ β-thujone (0.1-64.6%),​ trans-epoxyocimene (0.1-59.7%),​ trans-verbenol (0-11.7%), carvone (0-18.5%), (E)-sabinyl acetate (0-70.5%), curcumene (0-7.0%), neryl butyrate (0.1-13.9%),​ neryl 2-methylbutanoate (0.1-9.2%), neryl 3-methylbutanoate (0.4-7.3%), and chamazulene (0-6.6%). Monoterpenes were predominant (44.0-67.9%) in the oils from Scotland, Estonia (2000, 2002), Moldova, and Hungary. In the other oils studied oxygenated monoterpenes (41.2-93.9%) were found to predominate. The highest content of oxygenated sesquiterpenes (11.9-29.8%) was found in the oils from Italy, Latvia, Lithuania, and Germany. Armenian oil contained more chamazulene (6.6%) than the other samples studied (0-2.1%). Four chemotypes were found to be characteristic of A. absinthium growing in Europe: sabinene and myrcene rich oil, α- and β-thujone rich oil, epoxyocimene rich oil, and (E)-sabinyl acetate rich oil. Some mixed chemotypes were also found."​ \\ "​Variations in the essential oil composition of Artemisia absinthium L. obtained from different geographical areas of Europe were determined using capillary gas chromatographic and mass spectrometric analysis methods. The oils from air-dried wormwood were obtained in yields of 0.1-1.1%. The Absinthii herba grown in Estonia corresponded to the EP standards in the aspect of the essential oil contents. A total of 107 components were identified, representing over 85% of the total yield of oil. The principal components in the oils were sabinene (0.9-30.1%),​ myrcene (0.1-38.9%),​ 1, 8-cineole (0.1-18.0%),​ artemisia ketone (0-14.9%), linalool and α-thujone (1.1-10.9%),​ β-thujone (0.1-64.6%),​ trans-epoxyocimene (0.1-59.7%),​ trans-verbenol (0-11.7%), carvone (0-18.5%), (E)-sabinyl acetate (0-70.5%), curcumene (0-7.0%), neryl butyrate (0.1-13.9%),​ neryl 2-methylbutanoate (0.1-9.2%), neryl 3-methylbutanoate (0.4-7.3%), and chamazulene (0-6.6%). Monoterpenes were predominant (44.0-67.9%) in the oils from Scotland, Estonia (2000, 2002), Moldova, and Hungary. In the other oils studied oxygenated monoterpenes (41.2-93.9%) were found to predominate. The highest content of oxygenated sesquiterpenes (11.9-29.8%) was found in the oils from Italy, Latvia, Lithuania, and Germany. Armenian oil contained more chamazulene (6.6%) than the other samples studied (0-2.1%). Four chemotypes were found to be characteristic of A. absinthium growing in Europe: sabinene and myrcene rich oil, α- and β-thujone rich oil, epoxyocimene rich oil, and (E)-sabinyl acetate rich oil. Some mixed chemotypes were also found."​ \\
artemisia_absinthium_l.txt · Zuletzt geändert: 2019/05/21 11:00 von andreas