Benutzer-Werkzeuge

Webseiten-Werkzeuge


angelica_archangelica_l

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
angelica_archangelica_l [2017/11/08 10:10]
andreas
angelica_archangelica_l [2017/11/08 12:49]
andreas
Zeile 28: Zeile 28:
 "Essential oils obtained from Angelica archangelica L. roots immediately and after storage about 2.5 months after crushing were analyzed by GC and GC MS. The dominant component in the oils from roots crushed before analysis was α-pinene (15.7-19.4%), the other major compounds being δ -3-carene (15.4-16.0%) and limonene (8.1-8.8 %) or β-phellandrene (15.4%) and δ-3-carene (14.2%), depending on the growing localities. The dominating constituent of the crushed and stored root oils was 15-pentadecanolide (7.2-14.9%). The other main constituents were coumarine osthol (5.3-8.8%) and macrocyclic lactone 13-tridecanolide (5.4-6.1%). A large part (about 70%) of monoterpene hydrocarbons was evaporated during storage from small particles of roots, while the fraction of macrocyclic lactones (14.3-25.2%) and the amounts of coumarin osthol (5.3-8.8%) increased relatively 2-5 times." \\ "Essential oils obtained from Angelica archangelica L. roots immediately and after storage about 2.5 months after crushing were analyzed by GC and GC MS. The dominant component in the oils from roots crushed before analysis was α-pinene (15.7-19.4%), the other major compounds being δ -3-carene (15.4-16.0%) and limonene (8.1-8.8 %) or β-phellandrene (15.4%) and δ-3-carene (14.2%), depending on the growing localities. The dominating constituent of the crushed and stored root oils was 15-pentadecanolide (7.2-14.9%). The other main constituents were coumarine osthol (5.3-8.8%) and macrocyclic lactone 13-tridecanolide (5.4-6.1%). A large part (about 70%) of monoterpene hydrocarbons was evaporated during storage from small particles of roots, while the fraction of macrocyclic lactones (14.3-25.2%) and the amounts of coumarin osthol (5.3-8.8%) increased relatively 2-5 times." \\
 [Changes in the chemical composition of essential oil of Angelica archangelica L. roots during storage. Nivinskienë, O., Butkienë, R., Mockutë, D., Chemija (Vilnius), 14(1), 2003, 52-56]  [Changes in the chemical composition of essential oil of Angelica archangelica L. roots during storage. Nivinskienë, O., Butkienë, R., Mockutë, D., Chemija (Vilnius), 14(1), 2003, 52-56] 
 +
 +{{:osthol.jpg|}} osthole (7-methoxy-8-(3-methylbut-2-enyl)-2-chromenone)
  
 "The roots of Angelica archangelica L. were collected in three habitats (12 samples) in 1995-2002. The oils were analyzed by GC and GC/MS. The dominant component was α-pinene (15.7-20.8%) for two localities. Other three main constituents were δ-3-carene (15.4-16.9%), limonene (8.0-9.2%), sabinene (5.0-7.5%) for the first locality, and δ-phellandrene (13.5-15.4%), δ-3-carene (13.2-14.2%) and α-phellandrene (8.0-9.1%) for the second locality. The dominant oil components in the third locality were β-phellandrene (13.8-18.5%) together with α-pinene (11.4-15.0%), δ-3-carene (10.8-11.9%), α-cymene (6.8-10.6%) and α-phellandrene (5.9-8.6%). The oils contained 67.3-79.9% monoterpenoids (monoterpene hydrocarbons made up 60.2-72.6%), 9.6-19.4% sesquiterpenoids, 3.9-6.3% macrocyclic lactones and 1.2-5.3% coumarin osthol. Identified compounds (81 from 96) made up 91.4-99.2% of the oils." \\ "The roots of Angelica archangelica L. were collected in three habitats (12 samples) in 1995-2002. The oils were analyzed by GC and GC/MS. The dominant component was α-pinene (15.7-20.8%) for two localities. Other three main constituents were δ-3-carene (15.4-16.9%), limonene (8.0-9.2%), sabinene (5.0-7.5%) for the first locality, and δ-phellandrene (13.5-15.4%), δ-3-carene (13.2-14.2%) and α-phellandrene (8.0-9.1%) for the second locality. The dominant oil components in the third locality were β-phellandrene (13.8-18.5%) together with α-pinene (11.4-15.0%), δ-3-carene (10.8-11.9%), α-cymene (6.8-10.6%) and α-phellandrene (5.9-8.6%). The oils contained 67.3-79.9% monoterpenoids (monoterpene hydrocarbons made up 60.2-72.6%), 9.6-19.4% sesquiterpenoids, 3.9-6.3% macrocyclic lactones and 1.2-5.3% coumarin osthol. Identified compounds (81 from 96) made up 91.4-99.2% of the oils." \\
Zeile 36: Zeile 38:
 of the total oil. The importance and usefulness of GC/MS chemical fingerprinting during this study demonstrated that one sample of A. sinensis was misidentified as A.archangelica by the vendor in China. Our GC/MS profile indicated that the A.sinensis oil was rich in phthalides not in monoterpene hydrocarbons and was misidentified and was not A.archangelica as originally indicated" \\ of the total oil. The importance and usefulness of GC/MS chemical fingerprinting during this study demonstrated that one sample of A. sinensis was misidentified as A.archangelica by the vendor in China. Our GC/MS profile indicated that the A.sinensis oil was rich in phthalides not in monoterpene hydrocarbons and was misidentified and was not A.archangelica as originally indicated" \\
 [Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. Wedge, D. E., Klun, J. A., Tabanca, N., Demirci, B., Ozek, T., Baser, K. H. C., Zhang, J., Journal of agricultural and food chemistry, 57(2), 2009, 464-470] [[http://www.afpmb.org/sites/default/files/pubs/dwfp/publications/FY09/Wedge/Wedge2009.pdf]] [Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. Wedge, D. E., Klun, J. A., Tabanca, N., Demirci, B., Ozek, T., Baser, K. H. C., Zhang, J., Journal of agricultural and food chemistry, 57(2), 2009, 464-470] [[http://www.afpmb.org/sites/default/files/pubs/dwfp/publications/FY09/Wedge/Wedge2009.pdf]]
 +
 +Osthole may be (partly) responsible for the antispasmodic effect of A.archangelica, as it is also responsible for the relaxant effect on the rat ileum as a component of [[prangos_ferulacea_l._lindl|Prangos ferulacea]]. \\
 +[Antispasmodic effects of Prangos ferulacea acetone extract and its main component osthole on ileum contraction., Sadraei, H., Shokoohinia, Y., Sajjadi, S.E., Mozafari, M., Research in pharmaceutical sciences, Vol.8(2), 2013, 137] \\
 +[[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764677/]]
  
 {{:angelica_officinalis.jpg?600}} \\ {{:angelica_officinalis.jpg?600}} \\
angelica_archangelica_l.txt · Zuletzt geändert: 2022/06/08 21:01 von andreas