Benutzer-Werkzeuge

Webseiten-Werkzeuge


glycine_max_l._merr

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
glycine_max_l._merr [2015/10/30 07:49] andreasglycine_max_l._merr [2022/01/23 09:32] (aktuell) andreas
Zeile 8: Zeile 8:
 "Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8−4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself." \\ "Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8−4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself." \\
 [Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science., Steinhaus, P., Schieberle, P., Journal of agricultural and food chemistry, 55(15), 2007, 6262-6269] [Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science., Steinhaus, P., Schieberle, P., Journal of agricultural and food chemistry, 55(15), 2007, 6262-6269]
 +
 +The odor activity values(OAV) of (E,E)-2,4-decadienal, dimethyl disulphide, 3-methylbutanal, ethyl butyrate, and 2-methylbutanal showed that these compounds contribute to the characteristic odor of [[https://en.wikipedia.org/wiki/Tofu|tofu]] (made by coagulating soy milk). \\
 +[Volatile Flavor Compounds of Tofu [J]., Qi, S.P., Weng, X.C., Journal of Shanghai University (Natural Science Edition), 1, 2008, 25]
 +
 +„The Log3 FD values of 18 compounds were more than 3. Of these 2,3,5- trimethyl-pyrazine (a strong aroma of fried potatoes), isovaleric (smelly sock smell), 4-ethylguaiacol (slightly sweet herbal incense), acetic acid Ding esters (strong fruit aroma), ethyl phenylacetate (similar to honey fragrant ester), phenethyl alcohol (sweet floral aroma), 3-methyl-pentanoic acid (sour herb smell, slightly green grass aroma), 2,6-dimethylpyrazine (roasted coffee, peanuts, potato aroma), furfural (sweet, roasted, woody), maltol (with butter, sugar, like a special focus fragrant aroma), lactic acid (mild cream aroma), benzaldehyde (bitter almond aroma), ethyl lactate (baked apple aroma), n-octanol (green fragrance, fruit, incense), 4-ethylphenol (phenolic wood aroma, slightly sweet aroma), 2,5-dimethyl-pyrazine (a strong focus scent), 2-acetylpyrrole (bread aroma) all had very high FD values (Log3 FD ≥ 4 ), which could account for the overall flavor of soypaste.“ \\
 +[Zhang, Yan, et al. "Characterization of the volatile substances and aroma components from traditional soypaste." Molecules 15.5 (2010): 3421-3427] [[https://mdpi-res.com/d_attachment/molecules/molecules-15-03421/article_deploy/molecules-15-03421.pdf]]
  
 "Whereas 3-(methylthio)propanal (methional) and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) were detected in all of the soy sauce aroma concentrates as having high flavor dilution (FD) factors, 4-ethyl-2-methoxyphenol was detected as having a high FD factor in only four of the soy sauces (KS, US, TS, and SSS). Furthermore, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone (4-HEMF) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDMF), which were thought to be the key odorants in KS, were detected in KS, US, TS, and SSS, but the FD factors widely varied among them." \\ "Whereas 3-(methylthio)propanal (methional) and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) were detected in all of the soy sauce aroma concentrates as having high flavor dilution (FD) factors, 4-ethyl-2-methoxyphenol was detected as having a high FD factor in only four of the soy sauces (KS, US, TS, and SSS). Furthermore, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone (4-HEMF) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDMF), which were thought to be the key odorants in KS, were detected in KS, US, TS, and SSS, but the FD factors widely varied among them." \\
Zeile 27: Zeile 33:
 [Isolation and identification of the umami enhancing compounds in Japanese soy sauce., Kaneko, S., Kumazawa, K., Nishimura, O., Bioscience, biotechnology, and biochemistry, 75(7), 2011, 1275-1282] [Isolation and identification of the umami enhancing compounds in Japanese soy sauce., Kaneko, S., Kumazawa, K., Nishimura, O., Bioscience, biotechnology, and biochemistry, 75(7), 2011, 1275-1282]
  
-{{:glycine_max.jpg?500}} \\+Some foods own a "continuity, mouthfulness and thick flavour", which cannot be explained by the five basic tastes alone. These sensations are evoked by kokumi substances. \\ 
 +"The kokumi peptide γ-Glu-Val-Gly in soy sauces was determined and quantified by LC/MS/MS. Soy sauces contained γ-Glu-Val-Gly at 0.15-0.61 mg/dl. This is the first report to confirm the existence of this peptide in vegetable foods." \\ 
 +[Kuroda, Motonaka, et al. "Determination and quantification of the kokumi peptide, γ-glutamyl-valyl-glycine, in commercial soy sauces." Food chemistry 141.2 (2013): 823-828] 
 + 
 +{{:glycine_max.jpg?600}} \\
 Glycine max (L.) Merr. as Dolichos soja L., Jacquin,N.J. von, Icones plantarum rariorum, vol.1, t.145 (1781-1786) \\ Glycine max (L.) Merr. as Dolichos soja L., Jacquin,N.J. von, Icones plantarum rariorum, vol.1, t.145 (1781-1786) \\
 [[http://plantgenera.org/species.php?id_species=469943]] [[http://plantgenera.org/species.php?id_species=469943]]
 +
 +
 +{{http://www.botanische-spaziergaenge.at/Bilder/Konica_4/PICT3922.JPG}} \\
 +Glycine max \\ © Rolf Marschner (20007),  
 +[[http://botanische-spaziergaenge.at/viewtopic.php?f=429&t=1455| www.botanische-spaziergaenge.at]]
glycine_max_l._merr.1446191382.txt.gz · Zuletzt geändert: 2015/10/30 07:49 von andreas

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki