Benutzer-Werkzeuge

Webseiten-Werkzeuge


rosa_x_damascena

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
rosa_x_damascena [2022/04/28 14:36]
andreas
rosa_x_damascena [2023/07/12 09:32]
andreas
Zeile 12: Zeile 12:
 Besides dimethyl sulfide, dimethyl disulfide, and mintsulfide, dibenzothiophene and its methyl derivatives were identified in rose oil. Dibenzothiophene and its methyl derivatives possessed persistent, spicy, and powdery notes and supplied essential rose oil with the naturalness of rose scent perceived when smelled rose petals. These sulfur compounds were found in Bulgarian, Moroccan and Turkish rose oils as well as steam-distilled oils from petals of a modern ornamental hybrid tea rose from Japan and contributed to odor of the dry out of rose oil. \\ Besides dimethyl sulfide, dimethyl disulfide, and mintsulfide, dibenzothiophene and its methyl derivatives were identified in rose oil. Dibenzothiophene and its methyl derivatives possessed persistent, spicy, and powdery notes and supplied essential rose oil with the naturalness of rose scent perceived when smelled rose petals. These sulfur compounds were found in Bulgarian, Moroccan and Turkish rose oils as well as steam-distilled oils from petals of a modern ornamental hybrid tea rose from Japan and contributed to odor of the dry out of rose oil. \\
 [Omata, A., Yomogida, K., Ohta, T., Morikawa, Y., & Nakamura, S. (1987). New Sulfur Compounds of Rose Oil. Agricultural and Biological Chemistry, 51(12), 3421-3422] [[https://www.jstage.jst.go.jp/article/bbb1961/51/12/51_12_3421/_pdf]] [Omata, A., Yomogida, K., Ohta, T., Morikawa, Y., & Nakamura, S. (1987). New Sulfur Compounds of Rose Oil. Agricultural and Biological Chemistry, 51(12), 3421-3422] [[https://www.jstage.jst.go.jp/article/bbb1961/51/12/51_12_3421/_pdf]]
 +
 +"These data reveal that the composition of the picked tea rose is remarkably different from that of the living rose. As one can see, cis-3-hexenyl acetate, which constitutes 20% of the living rose headspace volatiles, is drastically reduced to 5% in the picked rose. At the same time, 3,5-dimethoxytoluene, one of the character-donating components of tea rose, is dramatically doubled in the picked flower, whereas important constituents like phenyl ethyl alcohol and its acetate are reduced in the picked flower." \\
 +[Mookherjee, Braja D., Robert W. Trenkle, and Richard A. Wilson. "The chemistry of flowers, fruits and spices: live vs. dead-a new dimension in fragrance research." Pure and Applied Chemistry 62.7 (1990): 1357-1364] [[https://www.degruyter.com/document/doi/10.1351/pac199062071357/pdf]]
  
 Main components of the headspace of Rosa damascena flowers collected on Tenax were (Z)-3-hexenyl acetate (29.7%), phenylethanol (14.1%), nerol (11.1%), geraniol (9.7%), phenylethyl acetate (5.8%), hexyl acetate (5.1%), and geranial (1.1%). \\ Main components of the headspace of Rosa damascena flowers collected on Tenax were (Z)-3-hexenyl acetate (29.7%), phenylethanol (14.1%), nerol (11.1%), geraniol (9.7%), phenylethyl acetate (5.8%), hexyl acetate (5.1%), and geranial (1.1%). \\
rosa_x_damascena.txt · Zuletzt geändert: 2023/08/08 10:24 von andreas